Rev. James G. Gambet Center DeSales University | Center Valley, PA

Penn State Architectural Engineering Capstone Project

Brett Tallada | Construction Option | Advisor: Ray Sowers

Project Background LEED® Evaluation Conceptual Energy Modeling Green Roof Implementation On-Site Renewable Energy Advanced Lighting Controls Conclusion

- New building for Business and Healthcare Education 10 classrooms and lecture hall
- Business classrooms with mock trading floor
- Cutting edge patient, simulation, and anatomy labs • Faculty and administrative offices

Project Background

Building Location: DeSales University – Center Valley, PA Building Size: 77,000 SF Number of Stories: 2 Stories Occupancy/Function Type: Business - Offices, Education, Labs **Project Cost: \$27 Million Dates of Construction: June 2011 – February 2013 Project Delivery Method: Design-Bid-Build**

Owner: DeSales University Architect: Breslin Ridyard Fadero Architects **Construction Manager: Alvin H. Butz, Inc. Civil/Structural Engineer: Barry Isett and Associates**

BRESLIN RIDYARD FADERO ARCHITECTS

Mechanical/Electrical Engineer: Snyder Hoffman Associates

ALVIN H. BUTZ, INC. CONSTRUCTION MANAGER

Project Background **LEED® Evaluation**

Conceptual Energy Modeling Green Roof Implementation On-Site Renewable Energy Advanced Lighting Controls Conclusion

LEED® 2009 Scorecard

LEED® Category	Credits Earned	Possible Credits
Sustainable Sites	7	26
Water Efficiency	8	10
Energy and Atmosphere	11	35
Materials and Resources	6	14
Indoor Environmental Quality	10	15
Innovation and Design Process	6	6
Regional Priority Credits	2	4
Total (LEED® Silver)	50	110

- **DeSales focusing more attention to mission** of sustainability
- building on campus
- **Designed for high performance and** efficiency
- **Expected to achieve LEED® Silver rating**

Areas for Improvement

- 15/19 credits available for optimizing energy performance • 7 credits available for on-site renewable energy • 2 credits available for innovative wastewater technology
- 1 credit available for use of certified wood

LEED® Evaluation

Gambet Center to be second LEED®

Technical Analyses

- **Conceptual Energy Modeling Understand early design implications**
- **Green Roof Implementation** II. **Reduce mechanical load of Lecture Hall**
- **III.** On-Site Renewable Energy **Provide 13% of building's electricity**
- **IV.** Advanced Lighting Controls **Increase energy efficiency**

Technical Analysis I Conceptual Energy Modeling

Conceptual Energy Modeling

Project Vasari Energy Analysis Results

Green Roof Implementation

On-Site Renewable Energy

Advanced Lighting Controls Conclusion

Anatomy of an Energy Model

- 2014

- Conceptual energy analysis based on mass model • Used throughout design to compare alternative options • Provides detailed report on annual energy usage • Based on building form, assemblies, function, and systems

Project Vasari

Beta software from Autodesk Labs – integrated into Revit

Steps for Energy Model Analysis

- **1.** Create or Import Building Model
- **2.** Set Building Parameters
- **3.** Run Energy Model Simulation
- **4.** Analyze Results
- **Run Additional Simulations**
- **5.** Modify Building Variables 7. Compare Results

Conceptual Energy Modeling

Project Vasari **Energy Analysis** Results

Green Roof Implementation

On-Site Renewable Energy

Advanced Lighting Controls Conclusion

Mass Energy Model of Gambet Center

Original Design Parameters			
Location and Orientation	(40.5°N, 75.4°W), S19°W		
nction and Operating Schedule	Year-Round University Building		
Construction Type	New Construction		
Glazing Percentage	38%		
Target Sill Height	2'-6"		
Glazing Shade Depth 2'-6"			
Wall Construction	Standard Construction, High Insulation		
Roof Construction	Metal deck with 8" Insulation		
HVAC System	High efficiency Packaged Gas VAV		

Compare effect on annual energy consumption when using a **Geothermal Heat Pump**

Energy Analysis

Information Provided from Energy Analysis:

- Annual Carbon Emissions
- Annual Energy Use/Cost ullet
- Fuel and Electricity Consumption
- Lifecycle Energy Use
- Monthly HVAC Loads
- Weather Design Data
- **Renewable Energy Potential**

<u>Conceptual Energy Modeling</u>

Project Vasari Energy Analysis **Results**

- Green Roof Implementation
- On-Site Renewable Energy
- Advanced Lighting Controls Conclusion

Implications:

- 60% reduction in natural gas consumption
- Estimated annual fuel savings of \$16,257
- 3.4% increase in whole building power consumption
- Total annual savings estimated to be \$13,434
- **Optimizes energy efficiency** of the building by 6%

Vasari Results

Electricity Usage

Total Energy Usage

Conclusion

- Conceptual energy modeling allows comparative analysis for smarter design choices
- Project Vasari is effective at easily calculating changes in energy consumption for various locations, systems, and assemblies
- A geothermal heat pump HVAC system increases energy efficiency by 6%, eligible for 3 additional LEED® credits
- It is the designer's responsibility to understand and balance the owner's goals and budget

Recommendation

- The designers of the building can easily use this tool to create a more energy conscious building
- If needed, a geothermal heat pump should be installed for the purpose of helping the Gambet Center achieve LEED® Gold.

Technical Analysis II Green Roof Implementation

Green Roof Implementation

Proposed Design Breadth Analyses Lifecycle Cost Analysis Recommendation

- On-Site Renewable Energy
- Advanced Lighting Controls
- Conclusion

Proposed Design

GroRoofTM Hybrid Green Roof

• 18" x 18" x 4.5" Modular Green Roof System Interlocking trays for full soil integration Instant Vegetation Dedicated drainage channels

Roof Above Lecture Hall

5,855 SF Extensive Green

<u>Green Roof Implementation</u>

Proposed Design **Breadth Analyses** Lifecycle Cost Analysis Recommendation

On-Site Renewable Energy

Advanced Lighting Controls

Conclusion

Applicable Equations

Live Load Reduction $L_r = L_o[.25 + \frac{15}{\sqrt{K_{LL}A_t}}]$ Factored Distributed Load $W=(1.2)(D)+(1.6)(L_r)+(0.5)(S)$ w_u=(W)(Tributary Width) Factored Shear Force $\mathbf{V}_{\mathbf{u}} = \frac{(w_u)(l)}{2}$ Factored Bending Moment $M_{\text{max}} = \frac{(w_u)(l^2)}{8}$ | pin-pin $M_{\text{max}} = \frac{(w_u)(l^2)}{12}$ | fixed-fixed

Beams: spaced 5'-4" on center (10) 23'-10" W12x16 (1) 23'-10" W14x22 (1) 23'-10" W18x35 (1) 23'-10" W21x50

Structural Breadth

Steel Members

Girders: (1) - 63'-9" W33x130 (1) - 63'-9" W36x361

Dead, Live, and Snow Loads				
Item	Built-Up Roof	GroRoof TM		
Steel Beam Self Weight	5 psf	5 psf		
Metal Deck	2 psf	2 psf		
5" Rigid Insulation	2 psf	2 psf		
M,E,F,P	15 psf	15 psf		
Ceiling	2 psf	2 psf		
4 ¹ / ₂ " GroRoof TM	-	32 psf		
Total Dead Load	26 psf	58 psf		
Total Roof Live Load	20 psf	20 psf		
Total Snow Load	30 psf	30 psf		

<u>Green Roof Implementation</u>

Proposed Design **Breadth Analyses** Lifecycle Cost Analysis Recommendation

On-Site Renewable Energy

Advanced Lighting Controls

Conclusion

Applicable Equations

Live Load Reduction $L_r = L_o[.25 + \frac{15}{\sqrt{K_{LL}A_t}}]$ Factored Distributed Load $W=(1.2)(D)+(1.6)(L_r)+(0.5)(S)$ w_u=(W)(Tributary Width) Factored Shear Force $\mathbf{V}_{\mathbf{u}} = \frac{(w_u)(l)}{2}$ Factored Bending Moment $M_{\text{max}} = \frac{(w_u)(l^2)}{8}$ | pin-pin $M_{\text{max}} = \frac{(w_u)(l^2)}{12}$ | fixed-fixed

Beams: spaced 5'-4" on center (10) 23'-10" W12x16 (1) 23'-10" W14x22 (1) 23'-10" W18x35 (1) 23'-10" W21x50

Structural Breadth

Steel Members

Girders: (1) - 63'-9" W33x130 (1) - 63'-9" W36x361

Beam and Girder Analysis						
	Shear	Max. Shear	Moment	Max. Moment	Pass/Fail	
Beams						
W12x16	7.44 k	79.2 k	44.3 k-ft	75.4 k-ft	Pass	
W14x22	7.44 k	94.9 k	44.3 k-ft	125 k-ft	Pass	
W18x35	7.44 k	159 k	29.45 k-ft	249 k-ft	Pass	
W21x50	7.44 k	237 k	29.45 k-ft	413 k-ft	Pass	
Girders						
W33x130	31.66 k	576 k	378.37 k-ft	1750 k-ft	Pass	
W36x361	63.32 k	1280 k	756.74 k-ft	5810 k-ft	Pass	

Green Roof Implementation

Proposed Design **Breadth Analyses** Lifecycle Cost Analysis Recommendation

On-Site Renewable Energy

Advanced Lighting Controls

Conclusion

Applicable Equations

CLTD Method – ASHRAE Ch. 28 $q = (U)(A)(\sum CLTD)$ Corrected CLTD $CLTD_{corr} = CLTD + (78 - t_r) + (t_m - 85)$ t_r = inside temperature (65°F) t_m = mean outdoor temperature (73°F) Energy Efficiency Ratio (EER)

> $EER = \frac{Cooling \ Load(BTU)}{Load(BTU)}$ Input Watts (W)

Roofing System Component	R-Value
1 ½" Metal Roof Decking	-
5" Rigid Insulation	20
1⁄2" Insulation Cover Board	.85
Single-Ply Asphalt Waterproofing Membrane	.15
GroRoof TM Extensive II Module	3
Total R-Value (∑R)	24
U-Value $(1/\Sigma R)$.0417

CLTD Method Results	
Total Daily Cooling Load in BTU	194,834
Total Annual Cooling Load in BTU (153 days)	29,809,677
Green Roof Cooling Load Reduction in BTU (60%)	17,885,806

Mechanical Breadth

Energy Savings

Reduced Load	_ 17,885,
EER	1
1,640 kW	h × \$0.09

Mechanical Breadth Wrap-Up

- CLTD method considers U-Value; excellent thermal gain on its own

- 808 *BTU* $= 1,640 \, kWh$
- /kWh = **\$147.68**

Low cost savings implies an unfavorable payback period performance of original design reduces most solar heat

Green Roof Implementation

Proposed Design Breadth Analyses Lifecycle Cost Analysis Recommendation

On-Site Renewable Energy

Advanced Lighting Controls

Conclusion

Payback Period 25 Years Return on Investment \$22,263 (20%)

*Contingent upon the passing of proposed legislation

Lifecycle Cost Analysis

Up-Front Cost Estimate

- 4.5" GroRoof Installed Cost per SF: \$19.00 GroRoof Area: 5,855 SF
- Total Up-Front Cost: **\$111,245**

Energy Savings \$147.86 per year Increased Lifespan Savings \$77,688 in the 25th year Tax Incentive Savings \$50,000 over first 6 years

Green Roof Implementation

Proposed Design Breadth Analyses Lifecycle Cost Analysis Recommendation

- On-Site Renewable Energy
- Advanced Lighting Controls
- Conclusion

Final Recommendation

Not Recommended

- Small ROI and unfavorable payback period Low energy savings No affect to LEED®
- \bullet

- Saves owner from replacing roof in 25 years • Depends on if owner is willing to invest • Investment could profit owner approx. \$20,000 by increasing lifespan

Recommendation

Recommended – If Legislation Passes

Conclusion:

- Although a 20% ROI, the goal of this analysis was to increase energy efficiency
- The energy savings are negligible and will not affect LEED® score
- Owner has two options

Technical Analysis III On-Site Renewable Energy

On-Site Renewable Energy

Proposed Design Generation Capacity Lifecycle Cost Analysis Recommendation

Advanced Lighting Controls

Conclusion

- (310) 250W Astronenergy NOVA Solar Panels
- 77,500 Wdc generation capacity
- SatCon Powergate Plus 100 kW Inverter
- 33.5° panel tilt; 6' -1.5" row spacing

- (8) 14.4 kW Solar Tree Structures in parking lot 115,200 Wdc generation capacity
- SatCon Powergate Plus 130 kW Inverter

Proposed Design

Rooftop Array

Envision® Solar Tree Parking Canopy

Solar Shading Study (12 pm)

Z

Ð

N

On-Site Renewable Energy

Proposed Design Generation Capacity Lifecycle Cost Analysis Recommendation

Advanced Lighting Controls

Conclusion

Annual Power Generation 220,894 kWh Building Annual Power Use 781,313 kWh Renewable Percentage 28% Annual Cost Savings \$21,206

PVWattsTM Input Parameters							
City	Allentown			IIII	J.J		
State	Pennsylvania		- P1				
Latitude	40.65° N						
Longitude	75.43° W			vva	IS		
Elevation	117 m						
			Parking	Parking	Parking	Parking	
PV System S	Specifications	Roof	1	2	3	4	
DC Rating	; (kW)	77.5	28.8	28.8	28.8	28.8	
DC to AC I	Derate Factor	0.77	0.77	0.77	0.77	0.77	
AC Rating	; (kW)	59.7	22.2	22.2	22.2	22.2	
Array Typ)e	Fixed Tilt					
Array Tilt		33.5°	15°	15°	15°	15°	
Array Azi	muth	1990	1890	192º	205°	209º	

Generation Capacity

PVWatts TM Results						
	Mo	onthly AC I	Energy Gene	erated (kW	h)	
Month	Roof	Parking 1	Parking 2	Parking 3	Parking 4	Total
1	5737	1737	1731	1686	1662	12,553
2	6273	2068	2063	2032	2016	14,452
3	8554	2993	2989	2956	2939	20,431
4	9230	3413	3412	3400	3391	22,846
5	9230	3605	3604	3588	3581	23,608
6	8816	3540	3538	3524	3517	22,935
7	9540	3743	3740	3725	3720	24,468
8	8856	3338	3337	3324	3317	22,172
9	7924	2828	2826	2807	2797	19,182
10	7358	2434	2430	2389	2368	16,979
11	4781	1514	1510	1481	1467	10,753
12	4829	1451	1446	1405	1384	10,515
Annual Electricity Generation (kWh)						220,894
	Annual Cost Savings at \$0.09/kWh \$21,205.82					

On-Site Renewable Energy

Proposed Design **Generation Capacity** Lifecycle Cost Analysis Recommendation

Advanced Lighting Controls

Conclusion

Annual Cost Savings \$21,206 per year ITC Tax Incentive (30%) \$367,845 after first year *SREC (\$180/MWh)* \$39,840/year for 10 years

Lifecycle Cost Analysis

Up-Front Cost Estimate

310 panels \times 250 $\frac{Wdc}{panel}$ = 77,500 Wdc 77,500 Wdc × \$3.68/Wdc installed = **\$323,950** 100 kW SatCon Powergate Plus Inverter = **\$45,900** 8 Solar Canopies × 14,400 $\frac{Wdc}{Structure}$ × \$7/Wdc Installed = **\$806,400** 135 kW SatCon Powergate Plus Inverter = **\$49,900** Total Photovoltaic System Cost = \$1,226,150

23 years

\$70,246 (5.7%)

- Pay Back Period
- **Return on Investment**

On-Site Renewable Energy

Proposed Design **Generation Capacity** Lifecycle Cost Analysis Recommendation

Advanced Lighting Controls

Conclusion

Final Recommendation

- **Rooftop array with one Solar Canopy Generates 15.7% - 7 LEED® credits Reduces payback period to 15 years** \$105,000 ROI (21%)

Recommendation

Revised Design

Conclusions

- for providing over 13% of Gambet Center's electricity
- The long payback period and low ROI make the option undesirable to the owner
- savings

The proposed system is easily eligible for 7 LEED® credits

Premium price of Envision® Solar Tree offsets the future

Technical Analysis IV Advanced Lighting Control

- Project Overview
- Conceptual Energy Modeling
- Green Roof Implementation
- On-Site Renewable Energy

Advanced Lighting Controls

Quantum® Upgrade Energy Savings Lifecycle Cost Analysis Recommendation

Conclusion

彩LUTRON。

System Capacity Summary					
	Used	Avail.	Req'd		
EcoSystem®	18	110	198		
Loop 1	18	46	-		
Loop 2	0	64	-		
QS Devices	261	36	110		
Link 1-A	94	5	-		
Link 1-B	Panel Link				
Link 2-A	75	24	-		
Link 2-B	92	7	-		

99 QS Devices per Link64 Eco Devices per Loop

HUB 1

Quantum® Upgrade

QS Links

- Wall Keypads
- Sensor Modules
- EcoSystem® Loops
- Fixture/AV Interfaces

EcoSystem® Loop

Upgrade Summary

- 80 Keypads, 76 Occupancy Sensors and 65 Daylight Sensors for perimeter faculty offices
- 198 EcoSystem® Compatible Fixtures
- Insufficient system capacity
- Upgrading to more advanced Hubs significantly increases cost

Wireless Option

- Maximizes system limitation
- 29 Existing sensor modules provide enough RF range for wireless inputs
- Wireless devices are less expensive
- 2 additional EcoSystem® loops added to QS Link

- Project Overview **Conceptual Energy Modeling** Green Roof Implementation On-Site Renewable Energy **Advanced Lighting Controls** Quantum[®] Upgrade **Energy Savings** Lifecycle Cost Analysis Recommendation
- Conclusion

Annual Cost Savings \$1,330 per year Improves Bldg. Efficiency 1% (No LEED® points)

Energy Savings

Lighting Load Summary

Baseline Lighting Load	216,500 kWh
urrent Energy Savings	27,212 kWh
Current Lighting Load	189,287 kWh
graded Energy Savings	14,878 kWh
ograded Lighting Load	174,409 kWh
Increase in Energy Effi	ciency
rent Design over Baseline	13%
ded Fixtures over Baseline	34%
ed Design over Current Load	8%
al Savings over Baseline	100/

Luminaire Takeoff

- Complete quantity takeoff of luminaires
- Assumes 10 hours per day
- Considers Lutron's approximations for energy savings
- Calculated lighting loads for no control system, the original Quantum® system, and the proposed wireless upgrade

Energy Savings per Control Strategy

ersonal Dimming	10%
ccupancy Sensing	15%
aylight Harvesting	15%

Project Overview Conceptual Energy Modeling Green Roof Implementation On-Site Renewable Energy

Advanced Lighting Controls

Quantum[®] Upgrade Energy Savings Lifecycle Cost Analysis Recommendation

Conclusion

Payback Period **5** years Return on Investment \$13,471 (203%)

Lifecycle Cost Analysis

Additional Cost of Upgrade

- Exact price information not revealed, as requested by Lutron®
- Considers additional equipment, one day of field start up, and deducts the cost of the original equipment

- Annual Cost Savings \$1,330 System Lifetime
 - 15 years

Project Overview Conceptual Energy Modeling Green Roof Implementation On-Site Renewable Energy

Advanced Lighting Controls

Quantum[®] Upgrade Energy Savings Lifecycle Cost Analysis Recommendation

Conclusion

Final Recommendation

the project

Although no change to LEED® score, upgraded system should be added to

Conclusions

6% more efficient than current design Upgrade does not affect LEED® score Very favorable payback period and ROI

Conclusion

Project Overview Conceptual Energy Modeling Green Roof Implementation On-Site Renewable Energy Advanced Lighting Controls **Conclusion Analysis Summary**

Other Considerations

Analysis Summary

Goal: Achieve LEED® Gold rating

Recommendations

Roof Implementation	0		×
oltaic System	7	\checkmark	
ed Light Controls	0		×
Goal Achieved			×

Goal: Acceptable payback period and return on investment

	YES	NO
Green Roof Implementation	\checkmark	×
Photovoltaic System	\checkmark	
Upgraded Light Controls	\checkmark	
Goal Achieved	\checkmark	

Project Overview Conceptual Energy Modeling Green Roof Implementation On-Site Renewable Energy Advanced Lighting Controls **Conclusion** Analysis Summary **Other Considerations**

Other Considerations

Goal: Achieve LEED® Gold rating

Recommendations

Goal Achieved			×
ed Light Controls	0		×
oltaic System	7	\checkmark	
Roof Implementation	0		×
	Point Gain	YES	NO

Certified Wood – 1 credit

• 50% of wood certified by Forest Stewardship Council

Innovative Wastewater Technology – 2 credits

- Substitute 50% of waste water with rainwater harvesting system
- 10,000 gallon system costs \$140,000-\$200,000

Optimize Energy Performance – +3 credits

- Heat pump HVAC system considered in Tech I
- Improves building efficiency by 6 percent
- \$584,000 cost increase over VAV system

Thank You

DeSales University Breslin Ridyard Fadero Architects Alvin H. Butz, Inc. Lutron Electronics Co., Inc. **MGV GroRoof**

Acknowledgements

Advisor: Ray Sowers Moses Ling **AE Faculty**

Family and Friends

³"Green Roof Legislation, Policies, and Tax Incentives." Plant Connection, Inc, 2013. <u>http://www.mypl</u>

⁴Gronbeck, Christopher. Panel Shading Calculator. 2009. htt

⁵GroRoofTM. h

⁶"History of Greenroofs." Lawrence Technological University.

⁷IESNA 2000 Proceedings, Paper #34: Occupant Use of Manual Lighting Controls in Private Offices. "Giving the occupant manual switching and dimming provided a total of 15% added savings above the 43% achieved by motion sensors.

⁸IESNA 2000 Proceedings, Paper #43: An analysis of the energy and cost savings potential of occupancy sensors for commercial lighting systems. "Occupancy sensor savings range from 17% to 60% depending upon space type and time delay settings."

⁹Kelly, Jim. Photovoltaic Array Installer. (2013, February 28). Phone Interview.

¹⁰Landau, Charles R. "Optimum Tilt of Solar Panels." 2012. <u>ht</u>

¹¹LiveRoof[®]. ht

¹²Lutron Electronics Company, Inc.

References

¹Allen, Carolyn. "Solar Trees in Parking Lots." <u>http://www.californiagreensolutions.com/cgi-bin/gt/tpl.h.content=2180</u>

²ASHRAE, (1997), ASHRAE Handbook-Fundamentals, Atlanta, American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.

¹³SatCon Powergate Plus 100kW Inverter. <u>http://www.solarpanelsonline.org/SatCon-Powergate-Plus-100kW-inverter-480V-</u>

¹⁴SatCon Powergate Plus 135kW Inverter. http://www.solarpanelsonline.org/SatCon-Powergate-Plus-135kW-

¹⁵Snodgrass and McIntyre. The Green Roof Manual. Timber Press, 2010.

¹⁶"Solar Energy 101: Introduction to Solar Energy." Dow Corning.

¹⁷SREC Pricing. PA AEPS Alternative Energy Credit Program.

¹⁸"Total Light Management." Lutron Electronics Company, Inc, 2011.

¹⁹US Department of Energy. How to Select Lighting Controls for Offices and Public Buildings. Claim: 27% potential savings using daylight harvesting.

²⁰Walsh, Tom. LiveRoof[®] Installer. (2013, February 6). Phone Interview.

²¹Williams, Zach. GroRoofTM Director of Tech Sales. (2013, February 12). Phone Interview.

²²Zeman, Miro. "Introduction to Photovoltaic Solar Energy." Delft University of Technology.

²³Shirian, Abbas. "Life Cycle Cost." Bridgers & Paxton Conulting Engineers, Inc.